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PETER D. LAXt

Abstract. In this talk we discuss the almost periodic behavior in time of space periodic solutions of
the KdV equation

U + UU + Uxx O.

We present a new proof, based on a recursion relation of Lenart, for the existence of an infinite
sequence of conserved functionals F,,(u) of form P,.(u) dx, Pn a polynomial in u and its derivatives;
the existence of such functionals is due to Kruskal, Zabusky, Miura and Gardner. We review and
extend the following result of the speaker: the functions u minimizing Flv+l(u) subject to the
constraints F(u) Ai,/" 0, , N, form N-dimensional tori which are invariant under the KdV flow.
The extension consists of showing that for certain ranges of the constraining parameters Aj the
functional Ftv+t(u) has minimax stationary points; these too form invariant N-tori. The Hamiltonian
structure of the KdV equation, discovered by Gardner and also by Faddeev and Zakharov, which is
used in these studies, is described briefly. In an Appendix, M. Hyman describes numerical studies of
the stability of some invariant 2-tori for the KdV flow; the numerical evidence points to stability.

1. Introduction. A recent series of investigations of nonlinear wave motion,
commencing with Kruskal and Zabusky’s paper [29], have led to the unexpected
discovery that an astonishingly large number of important differential equations
of mathematical physics are completely integrable Hamiltonian systems. Included
among these are the Korteweg-de Vries (KdV) and Boussinesque equations for
waves in shallow water, the equations governing self-induced transparency, and
self-focusing and self-modulating waves in optics, the vibrations of the Toda
lattice, the motion of particles under an inverse square potential, and some others.

These equations have been studied under two kinds of boundary conditions:
(i) Solutions are required to be periodic in space.
(ii) Solutions propagate in free space but are required to vanish at oo.
We shall call (i) the compact, (ii) the noncompact case. It turns out that

solutions behave quite differently in the two cases. In terms of Hamiltonian theory
the difference can be explained in the following way:

A Hamiltonian system

(1.1) dqj= Hpj, dpj: -Hq,dt dt
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is completely integrable if there is a canonical transformation introducing new
conjugate variables t0j, qj and a new Hamiltonian H so that H is a function of ,6
alone and is independent of q. The Hamiltonian system in these new variables is

di6: -Ho, :0dt

which implies that each/ is constant; therefore

dt H const.,

so that

(1.2) qi( t) qi(O) + tHo.
The difference between the compact and noncompact case is this: in the compact
case the are angle variables, i.e., the original variables are periodic functions of
the q, whereas in the noncompact case there is no such periodicity. When we
express the original coordinates q and p in terms of and/5, we see that in the
compact case every flow is a function of periodic motions; since the periods are, in
general, incommensurable, we see that flows in the compact case are almost
periodic. In the noncompact case, on the other hand, the time dependence in (1.2)
represents a genuine linear growth which describes the manner in which particles
or waves tend to infinity.

Starting with the work of Gardner, Greene, Kruskal and Miura 10], Faddeev
and Zakharov [6] have shown that the KdV equation

(1.3) u, + uux + Ux,,,, 0

constitutes, for solutions defined on the whole real axis and zero at x +c, a
completely integrable Hamiltonian system, whose action and angle variables are
simply related to the so-called scattering data of the associated Schr6dinger
operator, see (3.22). For solutions which are periodic with respect to x no such
formulas are known; nevertheless it is strongly suspected that in this case too we
are dealing with a completely integrable Hamiltonian system; the following items
are evidence for this:

1. numerical calculations by Kruskal and Zabusky which indicate that
solutions of KdV which are periodic in x are almost periodic in t, [29];

2. the construction of infinitely many conserved quantities by Gardner,
Kruskal and Miura;

3. Gardner’s observation that these functionals are in involution;
4. the existence of compact submanifolds of arbitrary finite dimension which

are invariant under the KdV equation.
In this talk we review these facts:
In 2 we describe a relation between conserved functionals and invariant

submanifolds of flows. In 3 we give a new proof of the existence of infinitely
many conserved functionals, and show that they are in involution. In 4 we

display the Hamiltonian structure of the KdV equation; in 5 we describe the
construction with the aid of a minimum problem of invariant submanifolds which
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are N-dimensional tori, and on which solutions of KdV are almost periodic in t. In
an Appendix, M. Hyman describes a calculation of some invariant 2-dimensional
tori, and demonstrates by means of another calculation the remarkable stability of
these manifolds.

At the end of 5 we give an indication how invariant tori might be con-
structed with the aid of a minimax problem.

2. Equations of evolution, invariant submanifolds and conserved function-
als. We consider equations of evolution of the form

d
(2.1) dU K(u),

K an operator, in general nonlinear, mapping a linear space into itself. We assume
that the initial value problem is properly posed, i.e., that solutions of (2.1) are
uniquely determined by their values at 0, that the initial value of u can be
prescribed arbitrarily, and that solutions exist for all t. The mapping of initial data
of solutions of (2.1) into data at time can be thought of as a flow.

Let F(u) be a functional, i.e., a numerically-valued function, in general
nonlinear, defined on the underlying linear space. F is called differentiable if the
directional derivative

F(u+ev)-F(u)
lim
e0 E

exists for all u and v and is a linear functional of v. We assume that our linear space
is equipped with a scalar product , ); since linear functionals can be expressed
as scalar products, we can write

d
(2.2) edF(u + ev) (Gv(u), v).

=0

Gv(u) is called the gradient of F at u with respect to the specified scalar product.
Gv is a nonlinear operator.

Let F be a functional for which F(u(t)) is independent of for all solutions of
(2.1). Such an F is called a conserved functional of the flow.

Differentiating, using the definition of gradient and equation (2.1) gives

d
F(u(t)) (Gv(u), u,) (Gv(u), K(u));(2.3) d-

we deduce the following theorems from this.
THEOREM 2.1. F(u) is an invariant functional of (2.1) if for all u,

(G(u),K(u))=O.

TIEOREM 2.2. Let F be a differentiable conserved functional of the flow (2.1).
Then solutions of
(2.4) Gv(u)=O

form an invariant manifold of the flow (2.1).
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A formal proof of Theorem 2.2 is given in [18]; here is a simple intuitive
argument:

Solutions of (2.4) are stationary points of F(u), i.e., points u0 such that for
every smooth curve u (e) issuing from u0 u (0),

d
(2.5) d-F(u(e)) =0

Since the flow carries smooth curves into smooth curves, and conserves the values
of F, (2.5) is true at all points along the trajectory issuing from Uo.

3. Conserved functionals of the KdV equation. The usefulness of Theorem
2.2 depends on the existence of many conserved functionals whose gradients have
tractable null sets. The KdV equation is rich in such functionals; three of them are
classical:

Fo(u) [ 3u dx,

(3 1) F,(u) -U
2 dx,

/,/3 __.Ux)l 2 dx.

The gradients of these functionals are

Go 3,

(3.2) G =u,

02 2
U +Uxx.

To prove that the functionals (3.1) are conserved for KdV we have to verify
condition (2.3) of Theorem 2.1, with GF given by (3.2) and K(u) -Ux uu.

Kruskal and Zabusky made the remarkable discovery that there are further
conserved functionals, of which

(3 1)3 F3(u f (@2u4 ---UUx5 2 q__Uxx)l 2 dx

is the first example. Eventually Gardner, Kruskal and Miura proved, see 11 ], that
these four are the beginning of an infinite sequence of conserved functionals F, of
the form

(3.1), F,,(u) f P, dx,
3

P, a polynomial in u and its derivatives up to order n 1. We give now a new proof
of the existence of these functionals F,, based on a remarkable recursion formula
for their gradients discovered by Andrew Lenart some years ago, first published in
[11]:

(3.3) HG, =OG,+,
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where H is the third order operator
2(3.4) H 03 +-u0 +-u,,, O ddx

note that H is antisymmetric:

(3.5) H* -H.

It is easy to verify by a calculation that (3.3) holds for n 0, 1 and 2. Next we show
the following theorem.

TEOREM 3.1. There exists a sequence G, o[ polynomials in u and its
derivatives up to order 2n 2 which satisC’y (3.3); G, is uniquely determined i[we set
the constant term equal to zero.

Pro@ We use the following simple calculus lemma" Suppose that O is a
polynomial in derivatives of u up to order ], such that for every periodic function u
of period p

P

dx O.O(u)

Then there exists a polynomial G in derivatives of u up to order j- 1 such that

O =oJ.

We assume that Gi has been constructed for all j <-n; to construct G,+ we
have to solve (3.3). According to the above calculus lemma, we have to show that
for all u,

I HG, dx 0.

Since according to (3.2)o, Go 3, we can rewrite this equation as

(3.6) (HG,, Go) O.

Using repeatedly the antisymmetry of H and 0 and relation (3.3) we can write the
following sequence of identities:

(HG,, Go)= -(G, HGo)=-(G,, OG)

(OG,, G) (gGn_l, a)

_[ (HG,/2, G,/2) if n is even,

(OG(+)/2, G(+)/2) if n is odd.

Because H and 0 are antisymmetric, both of these expressions are zero; this
proves that the compatibility relation (3.6) is fulfilled and completes the proof of
Theorem 3.1.

The argument presented above can be used, with trivial alterations, to prove
the following result of Gardner [9] which plays an important role in the Hamil-
tonian theory of the KdV equation.

TIEOREM 3.2. For all m and n and all u,

(3.7) (Gm, OGn)=O.

Next we show the following theorem.
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THEOREM 3.3. G/1 is the gradient of a functional ofform (3.1)/1.
Proof. Just as in finite-dimensional spaces, gradients G are characterized by

the symmetry of their derivatives. Set

d
(3.8) d--- G(u + ev)

Suppose G is the gradient of F; then

is equal to

=N(u)v.

d2

de dq
F(u+ ev +’Ow)

=0

(N(u)w,u) or (N(u)v,w)

depending on whether we differentiate first with respect to e or ft. Since mixed
partials are equal, the symmetry of N(u) follows.

To prove the converse, take a smooth path u(e)connecting Uo and Ul; denote
(d/de)u by u. Integrating

with respect to e we get

d
de
F(u(e))=(G(u),u)

(3.9) F(u)-F(uo) ] (G(u), u) de,.

Given G whose derivative is symmetric we define F by formula (3.9); to verify that
G is the gradient of F so defined we have to show that definition (3.9) is
independent of the path connecting Uo and u. To verify this independence we
consider one parameter families of curves u u (e, rt) with common endpoints Uo
and u. The derivative of the right side with respect to r is

I (G(u), u) de + I (N(u)u,, u) de.

We integrate the first term by parts; there are no boundary terms since u, 0 at
the endpoints, and so we get

-I(N(u)u, u,) de + I (N(u)um u.) de.

Clearly this quantity is zero if N is a symmetric operator.
Next we compute the derivative of G/l; let u(e) be a smooth curve, and

denote differentiation with respect to e by prime. Differentiating (3.3) with
respect to e we get

(3.10) H’G/1 + HG’

Using the definition (3.4) of H we have

which can be rewritten as K.u’, where K. is the operator

2(3.11) gn anO-t--sGn,,.
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and

We observe, using (3.4), that

an-1 2HG,_I,

Using relation (3.3),_ we get
a,,_=2G,.,,

Substituting these into (3.14) we get

(3.14)

where
4 2

an--1 2 G,- + -Gn_ + -jan- ux

2bn-1 an-1 +-jGn_l,,,,u q- On_xux +-an- Uxx.

b,_l OHGn_1"

Gnxx.

(3 15) K. H-(K._H)* Gn +Gnx.
On the other hand, a straightforward calculation gives

(3 16) KnO-(K,O)* - -G5Gx +3 nxx.

Subtracting (3.16) from (3.15) gives Lemma 3.4.
Now take equations (3.12),_ and (3.12),:

K,_l +HN,_ ON,,

K, + HN, ON,+a.

We multiply the first equation by H on the right, the second by 0 on the right, and
subtract the first from the second; we get

(3.17) ON,+O= K,O-K,_IH+ON,H+HN,O-HN,_IH.

We assume as induction hypothesis that Nn and N,_I are symmetric; since H is
antisymmetric, it follows that the last term on the right is symmetric, and that the
sum of the 3rd and 4th terms is symmetric. According to Lemma 3.4 the sum of the

ALMOST PERIODIC SOLUTIONS OF THE KdV EQUATION

Denote the derivative of Gn by Nn; by definition of derivative

G’n= Nnu ’, G’,+ N,+u’;

substituting this and the previous relation into (3.10) we get

(3.12) K, + HN,, ONn+l.
LEMMA 3.4.

(3.13) K,_H-KnO

is sel]’-ad]oint.
Pro@ An explicit calculation using the definition (3.4) of H and (3.11),_ of

K,_ gives the following formula:
2 192 43K,_H=G,_O4+2G,_xO3+sG_Iu +(G,,_ux+-G_xU)O+.

A slightly more tedious calculation gives

3K,_H-3(Kn_H)* an_O+ b_l,
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first two terms is symmetric; so we conclude from (3.17) that ONn+lO is symmetric.
From the symmetry of ON,+O we conclude that N,+ is symmetric on the

subspace consisting of periodic functions whose, mean value is zero. For such
functions fo and go can be written as derivatives of other periodic functions f and
g; thus

(fo, Ngo) (Of, S Og) -(f, ON Og) -(ON Of, g)

(S Of, Og) (Nfo, go).

We claim that N./ is symmetric over the whole space; to show this we define
F./ by formula (3.9) with G G./, taking Uo=0 and choosing as path of
integration the straight line segments connecting Uo=0 to u. Since G./ is a
polynomial in u and its derivatives, F./ is of the form

(3.18) F+(u) f P+,(u) dx,

P,+ a polynomial in u and its derivatives. We claim that the gradient of F,+ is
G,+; denote the gradient of F,+ by (,+. Since F,+ is of form (3.1),+, ,+ isa
polynomial in u and its derivatives. N,+ is symmetric on the subspace of functions
with mean value zero, it follows that for any u and v in that subspace

d
de

fn+l(U + eV) (Gn+l(U) V).
=0

Subtracting this from the definition of the gradient

d fn+l(U+F.V)=(dn+l(U),
de

we get that

(Gn+l(U)-d.+(u),v)=O
for all v with mean value 0. This implies that

Gn+(u)-G,+,(u)=const.

We claim that this implies that G,+ =(,+l; for both G,+l and (,+ are
polynomials in u and its derivatives, without constant term. If they were not
identical, one could easily construct a function of mean value zero such that
G,+(u)-a,+(u) is not constant. This completes the proof that G,+l is a
gradient; this implies that N,+ is a symmetric operator, and the inductive step for
the proof of Theorem 3.3 is complete.

THEOREM 3.5. The functionals F,, are conserved for solutions of the KdV
equation.

Proof. Using formula (3.2)2 for G2 we see that the KdV equation can be
rewritten in the form

(3.19) u,+OGz(u)=O,

i.e., K(u)=-OGz(u). Using Theorem 2.1 we conclude that F is a conserved
functional of KdV if and only if

(3.20) GF, OG2) O.
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According to relation (3.7) of Theorem 3.2, with n 2, the functionals F,, all
satisfy this condition; therefore all F,, are conserved. This completes the proof of
Theorem 3.5.

The same argument, when combined with the full force of Theorem 3.2 yields
a more general result. We define the nth generalized KdV equation to be

(3.21), ut+OGn(u)=O.

The proof given above also serves to prove the following theorem.
THEOREM 3.6. Each F,, is a conserved functional ]’or all generalized KdV

equations (3.21).
We turn now to another class of conserved functionals. Gardner, Kruskal and

Miura, see [11], have shown that the eigenvalues of the Schr6dinger operator

(3.22) L=OZ+u/6
are conserved functionals of the KdV equation. The author has shown that they
are conserved functionals of all generalized KdV equations. Another proof of this
has been given by Lenart, see [11]; here we present yet another proof.

Suppose , is a simple eigenvalue of L:

(3.23) Lw=Aw.

Then A is a differentiable functional of the potential u occurring in L; the gradient
of 1(u) is easily computed by considering one parameter families u(e) and
differentiating (3.22) with respect to e. We get

U
Lw’ +--d w Aw’ + A’ w,

where prime denotes derivative with respect to e. Multiply this equation by u and
integrate; using the symmetry of L and equation (3.23) we can eliminate w’ and
end up with this expression for A’:

UtW 2(3.24) A = dx u

here we have assumed that w is normalized so that (w, w) 1. By definition of the
gradient G,,

,’ (G,, u’).

Comparing this with (3.24) we conclude that

(3 25.) G, 2
--W

THEOREM 3.7. Each A is a conserved functional ]’or all generalized KdV
equations.

Proof. As we saw earlier, for any functional F and any solution u(t) of (3.21),,,

dF(u(t))
dt

(Gv, u,) (Gv, OG.),
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so that F is conserved if and only if for all u,

(3.26) Gv, OG,,) O.

Applying this to F and using (3.25) to express the gradient of I, we get

(3.27) (w2,0G,,)=O
as condition of invariance of . Next we make use of the following obscure but
well-known lemma.

2LEMMA 3.8 Suppose w is an eigenfunction of L, satisfying (3.23). Then w
satisfies the differential equation

(3.28) Hw2 4 Ow2,
where H is defined by (3.4).

Remark. This relation can be verified by a simple calculation.
Irrelevant remark. The jth powers of the eigenfunctions satisfy a (j + 1)st

order equation.
By using the antisymmetry of H and O, equation (3.28) and the recursion

relation (3.3) we get the following string of identities"

(W 2, OGre)= (w2, HG,,_)=-(Hw2, G,,_)
-4(Ow2, G,,_) 4)t (w 2, OG,,_)
(4,)" w2, OGo) O.

In the last step we used the fact that by (3.2)0, Go is a constant. This completes the
proof of (3.27) and thus of Theorem 3.7.

Remark. In case of a double root we choose for the functional F(u) + )t 2,
whose gradient is w + w, where Wl, w2 is any pair of orthonormal eigenvectors.
The rest of the proof proceeds as before.

We return now to the Lenart recursion relation

(3.29) HG,, =OGn+
which can be solved, starting with G0 1, for all positive integers. These recursion
relations can also be solved for negative integers n. Since OGo 0, we have for
n ---1,

HG_I O.

We have shown in 6 of 18] that this equation has nontrivial periodic solutions;
here we offer a different, topological proof for this fact;

The operator H is antisymmetric; therefore its eigenvalues are purely
imaginary. Since H is real, the eigenvalues are located symmetrically around the
origin. Now consider a one-parameter family of functions u(e) entering H. The
spectrum of H(e) is symmetric around the origin; therefore the multiplicity of 0 as
eigenvalue changes by an even number. When u 0, H 03", this operator has 0 as
eigenvalue of multiplicity 1; so it follows from the previous argument that for any
other u, H has 0 as eigenvalue with multiplicity 1 or 3.

Remark. This intuitive argument can easily be made rigorous, but it is hardly
worthwhile to do so since the proof in [18] is perfectly straightforward.
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Having shown that a nontrivial G-1 exists we can show that equation (3.3) has
a solution Gn for n --2,-3,. . The compatibility relation in this case is that
the right side, OGn/l, be orthogonal to the nullspace of H. Since that nullspace is
spanned by G_I the condition is

(OG,+I, G_) 0.

This can be verified in the same manner as (3.7) was for Theorem 3.2. The only
difference is that for n negative the G, are no longer polynomials in u and their
derivatives.

One could show that, if properly normalized, Gn is a gradient. However this is
unnecessary since we have given in [18] an explicit formula for the functionals
Fn, n =-1,-2,. , whose gradients Gn satisfy the recursion relation (3.3). They
are expressible in terms of the Floquet exponent of the operator L, defined as
follows:

For any real a, the equation

(L-a)w =0

has two distinguished solutions w+ satisfying

w(x+p)=K+/-lw+(x).
K K(a) is called the Floquet exponent; it is real in the so-called instability
intervals and of modulus one in the stability intervals. Of course K is a functional
of u as well as a function of a.

In 6 of [18] we have shown the following theorem.
THEOREM 3.9. The gradients of the functionals

F,
(-n- 1)!

logK(a,u)
=0

satisfy relations (3.3) ]’or n =-1,-2,....

4. Hamiltonian formalism. The Hamiltonian form of equations of motion is

d OH d OH
(4.1)n -zqi Pi j 1 N"

dt Oqt

the Hamiltonian H is a function of the 2N variables pj, % j 1,.-., N. Such
equations can be cast in another form with the aid of the notion of the Poisson
bracket, defined for any pair of functions F, K of the 2N variables as follows:

O(F, K)
(4.2) [F, K] =Z 0(% p)"

The important properties of the Poisson bracket are"

(a) [F, K] is a bilinear, alternating function of F and K.
(b) The Jacobi identity

(4.3) [IF, H], K] + [[H, K], F] + [[K, F], H] 0.

In terms of the Poisson bracket the Hamiltonian equations can be expressed
as follows"
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Let p(t), q(t) be a solution of (4.1), F any function of p, q; then

d
F(p(t), q(t))=[F, H].(4.4) d-

This formulation implies the following theorem.
THEOREM 4.1. Fis a conservedfunctionfor all solutions of (4.1)u ifand only if

(4.5) IF, HI 0.

It follows from this and the Jacobi identity (4.3) that if F and K are a pair of
conserved functions, so is their Poisson bracket. Two functions whose Poisson
bracket is zero are said to be in involution.

Two further results of Hamiltonian mechanics are the following:
THEOREM 4.2. Suppose H and K are in involution, i.e., [H, K] O. Then the

Hamiltonian flows generated byHand K, respectively, commute. That is, we denote
by S1-t(t) and S1(t) the operator which links initial position to position at time of a
point (p, q) under the Hamiltonian flows (4.1)/_/and (4.1)m respectively; then

(4.6) Sn(t)S:(r) SK(r)Su(t).

THEOREM 4.3. Suppose there exist N independent functions F,..., FN in
involution which are conserved under the Hamiltonian flow (4.1)u. Then (4.1)n is
completely integrable.

5. Hamiltonian structure of KdV and invariant manifolds. C. Gardner in [9]
and Faddeev and Zakharov in [6] have independently introduced a Hamiltonian
structure for the KdV equation. Here we follow Gardner’s line of development.

Gardner introduces the Poisson bracket

(5.1) IF, H] (Or, OOu),

where as before Gv, Gu denote the gradients of F and H with respect to the L2
scalar product .,- and 0 d/dx.

THEOREM 5.1. The bracket defined by (5.1) is
(a) bilinear,
(b) alternating,
(c) satisfies the Jacobi identity.
We sketch the proof given in [ 18]. Part (a) is obvious, and part (b) follows by

integration by parts. To prove (c) we compute the gradient of [F, H]. Using the
symmetry of the derivative of GF and GH, we can easily show that

(5.2) Gv,, Nv OGu-NH OGv,

where Nv and Nn are the second derivatives of F, H. The Jacobi identity (4.3)
follows from this if we use once more the symmetry Nv, N, and N:.

According to formula (2.3), if u(t) satisfies equation (2.1) and F is any
functional,

dF/dt Gv, K).

According to (3.19), for the KdV equation,

K -OG2.
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Therefore we can write, using (5.1)

dF/dt Gv, -OG2) IF, -F2].

Comparing this with (4.4) we see that the KdV equation is of Hamiltonian form,
with H=-F2.

Again using (5.1) we can rewrite equations (3.7) as

[fm, f,] 0,

and equation (3.27) as

[A, F,,,] 0.

One can show analogously, see 18], that

for any pair of eigenvalues of L. These relations can be expressed by saying the
functionals F, and A are in involution.

Since we don’t know an infinite-dimensional analogue of Theorem 4.3, we
cannot use this plethora of conserved functions in involution to conclude directly
that KdV is integrable. However Theorem 4.2 is true in infinite-dimensional
space, and can be used to construct invariant submanifolds of the KdV flow; we
outline briefly how:

We start with a variational problem originally suggested by Kruskal and
Zabusky:

Given the values

(5.3) F(u)=a,, i=0,... ,n-l,

find u which minimizes (- 1)U-Fr(u). The constants Ai have to be so chosen that
the constraint (5.3) is satisfied by some function, and so that Ai is not a stationary
value of F.(u) when the other constraints are imposed. This is equivalent to saying
that for any function u satisfying the constraints, the gradients

Go(u), G,(u)," ", Gu_l(U)

are linearly independent. We shall call such constraints admissible.
The following theorem was proved in [18].
THEOREM 5.2. For admissible constraints (5.3) the functional (-1)U-F(u)

is minimized by some [unction Uo, and every minimizing[unction satisfies an Euler
equation of the form

N--1

(5.5) G(u) Gu(u) + E ajGj(u).
o

The function G in (5.5) is the gradient of

(5.6) F(u) Fr(u) + Y ajF(u).
o

(5.4) G(uo) =0,

where
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As we have shown previously,

from which we deduce that

{G]=0,

IF, G]=0.
This implies that F is a conserved functional for all generalized KdV flows

(5.7) u, =OG(u).

Denote by S(t) the solution operator for equation (5.7). It follows from
Theorem 2.2 that if uo satisfies equation (5.4), then so does every function of the
form

N--1

(5.8) u II Sk (tk) UO, --00 < h, <

Denote the set (5.8) by S S(Ao, , Arc-l); the following result was proved in
[18].

THEOREM 5.3. S is a compact (N- 1)-dimensional manifold.
The operators Sk(t) map S onto itself, and they commute. Denote by the

collection of those vectors (Ol, , orq_l) for which

I-I &(o)= I.

is the module of periods. It follows from the definition of S that

S M/f.
Since S is (N-1)-dimensional and compact, it follows that is a lattice (i.e.,
discrete) and (N- 1)-dimensional; from this we conclude the following theorem.

THEOREM 5.4. S is an (N-1)-dimensional torus, and each Sk(t) is almost
periodic on S.

Every point on S(Ao, , AN_) minimizes G(u) subject to the constraints
(5.3). There may be points not on S which minimize Fu(u); but it follows from the
above analysis that the minimizing set is a union of disjoint (N- 1)-dimensional
tori.

The case N 1 is trivial and the case N= 2 is classical, going back to
Korteweg-de Vries [15].

Using formulas (3.2) we get the following expression for equation (5.4),
N=2"

2
Uxx -[--U -[- a U -[- ao O.

Multiplying this by 2u we obtain an equation of the form
2u=O(u),

where O is a cubic polynomial. From this we can express x as function of u by an
elliptic integral, which shows that Uo is an elliptic function of x. It can be shown
that in this case the minimizing set is a single circle formed by the translates of an
elliptic function Uo. It is easy to verify that the function

Uo(X + a t)
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is a solution of the KdV equation. This traveling wave has been called "cnoidal
wave" by Korteweg and de Vries.

Benjamin [2] and Bona [4] have proved the stability of simple cnoidal waves;
i.e., they have shown that if ul(s) is sufficiently near Uo(X) in an appropriate metric,
then for any value of t, S2(t)ul, the solution of KdV with initial value Ua, lies near
Uo(X + O) for some 0.

We surmise that all solutions S2(t)Uo constructed in this section are stable in
the above sense, as long as Uo is an absolute---or even just local--minimum of
FN(u) among all u satisfying constraints (5.3). The numerical experiments carried
out by M. Hyman and described in an Appendix to this paper certainly very
strongly suggest this.

Next we sketch a simple argument which shows that Fr has stationary points
on the constrained set (5.3) which are not minima. We use Morse theory,
according to which such stationary points exist if the homology of the set (5.3) is
not trivial.

THEOREM 5.5. For suitably chosen constants Ao," Ar_ the constrained
set (5.3) is not simply connected.

Proof. We shall handle the case N 3. Ao and A1 are taken as arbitrary, and
we denote by M the minimum of -Fr on the set (5.3), N 2. As remarked earlier,
in this case the minimizing set is a single circle consisting of all translates of an
elliptic function Uo(X).

Let n be an index 0 for which the nth Fourier coefficient of Uo is 0:

(5.9) _[ Uo(X) e- dx # O.

Consider the set of functions u which satisfy the constraints (5.3), N 2 and the
additional constraint

(5.9’) (u(x) e -in’ dx O.

Since this constraint excludes the solutions of the previous minimum problem, it
follows that the minimum value M of -F2(u) subject to this new constraint
exceeds the old minimum M of -Fz(u)"

M<M1.

We choose now a function u different from Uo but so close to it that

(5.10) -Fz(u,) < M.
We claim that the circle

0 -- Ul(X -- 0cannot be deformed to a point on the set of those u which satisfy

(5.11) F(u) F(u), ]=0, 1, 2.

To see this we introduce the projection P onto the nth Fourier coefficient. If
ul(x, 0, s), 0<_-s <- 1, were a deformation of ul(x +0) to a point, then Pu(x, O, s)
would be a deformation of an e-in to a point in the complex plane. Since

an e -i", n 0, winds around the origin, such a deformation would have to cross
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the origin; but then for some value of 0 and s the nth Fourier coefficient of the
function u u(x + O, s) is zero. This implies by (5.9) that

-Fz(u)>=M1,

which when combined with (5.11) contradicts (5.10).
Having proved the existence of a curve in the set (5.11) which is not

homotopic zero we consider all curves C in the same homotopy class, and
determine that one for which the maximum of F3(u) on C is as small as possible. I
surmise that this minimax problem has a solution; such a solution satisfies an
equation of the form (5.4), (5.5). As in the case of the minimum problem, the
solutions of the minimax problem form a 2-dimensional torus.

I suspect the solutions of equations of the form (5.4), (5.5), with aj and N
arbitrary, are dense among all C periodic functions.

The author and Jurgen Moser have shown, see 17] and 18], that if u satisfies
an equation of the form (5.4), then all but a finite number of eigenvalues of the
Schr6dinger operator L defined by (3.22) are double. Using this connection, and a
method of Hochstadt [14], McKean and van Moerbeke were able to use the
inverse method in spectral theory to study periodic solutions of (5.4). They have
given a new proof of Theorem 5.4, and were able to express solutions of (5.4) as
hyperelliptic functions. There is hope that their approach can be used to settle the
question of integrability of the KdV equation in the class of periodic functions.

Very recently McKean and Trubowitz succeeded in showing that all solutions
of KdV which are periodic in x are indeed almost periodic in t.

APPENDIX

JAMES M. HYMAN

In this Appendix we describe how the construction of special solutions of the
KdV equation which minimize F2 subject to the constraint F--Aj can be
implemented numerically. We saw in 3 that a minimizing function satisfies the
Euler equation

2

(A.1) G3 +E aG O.
o

A solution of (A.1) is an extremal for

2

(A.2) F F3 + Y. aiF.,
o

and presumably can be obtained by minimizing that functional. This is indeed
what we did. We chose the constants a_l, ao, al, then discretized the functional
(A.2) by specifying u at N equidistant points and expressed the first and second
derivatives of u in (A.2) by difference quotients. The resulting function of N
variables was minimized using A. Jameson’s version of the Fletcher-Powell-
Davidon algorithm [8]. The resulting discretized function is a somewhat crude

My thanks are due to A. Jameson for acquainting me with his FPD package.
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approximation to the function u we are looking for. To make u more accurate we
proceeded as follows:

We are looking for a periodic solution of (A.1); since this is a fourth order
equation, its solutions are parametrized by their four Cauchy data at, say, x 0.
Periodicity requires the Cauchy data at x p be equal to the Cauchy data at x 0.
We sought to satisfy this requirement by a sequence of approximations con-
structed by "shooting." The Cauchy data of un+l at x 0 was chosen by applying
the rule of false position to u,(p)-u,(O), u’n(p)-u’,(O), u,_l(p)-u,_(O) and
,-I(P)- u’n_l(0) U,+l(p) and u’,+I(P) were then computed numerically. For this

purpose we used the ODE package developed by A. Hindmarsh [13].
The following observations were helpful:
(a) Instead of matching all four Cauchy data for the fourth order equation

(A. 1), it sufficed to match only two, since according to 5 periodic solutions form a
two-parameter family, and therefore two of the matching conditions must be
consequences of the other two.

(b) The initial guesses for the Cauchy data come from the approximate
solution obtained by the variational procedure. Without such a good initial guess
we were unable to construct a periodic solution of (A. 1).

The periodic solution of (A.1) constructed above was then used as initial
value data. We solved numerically the initial value problem for the KdV equation
using Fred Tappert’s2 method [26] and code. The accuracy of the solution was
monitored by checking the constancy of the functionals Fo, F, F2, and the extent

0.00 2.00 4. 0) 6.00 8.00 10.00 12.00 14.00 16.00
X

FIG. 1. Periodic solution to equation (A.1) with ao =0, al =-8, a2-- 2 and period 15.7

My thanks are due to Fred Tappert for acquainting me with his KdV solver.



368 PETER D. LAX

to which the solution satisfied the ODE (A.1). The solution constructed by
Tappert’s method passed these tests of accuracy reasonably well. Solutions
constructed using earlier methods of Kruskal and Zabusky [29] and Vliegenthart
[28] were less accurate and were not used in this study. The finest vindication of
Tappert’s KdV solver was that after a finite elapse of time the solution resumed its
initial shape, in a shifted position. During the intervening time the shape of the
solution underwent considerable gyrations.

In Fig. 1 we present a periodic solution of equation (A.1), with ao=0,
a =-8, a2 2 and period 15.7. Figures 2 to 5 show the value at times .28,
.56, .84, and 1.12 of the solution to the KdV equation with initial values shown in
Fig. 1. Note that the function shown in Fig. 5 has the same shape as the initial
function in Fig. 1, except for a shift by the amount -5.1.

Figures 6 to 10 show the time history of a solution of KdV where the initial
value was obtained by superimposing a random disturbance3 on the initial
function shown in Fig. 1. Note that the disturbance is not magnified during the
flow, and that the averages of these disturbed signals are very close at all times
shown to the undisturbed signals pictured in Figs. 2-5. This calculation demon-
strates convincingly the great stability of the KdV flow pictured here. It also
demonstrates the ability to Tappert’s KdV solver to deal accurately with solutions
containing high frequency disturbances.

Figure 11 shows a double cnoidal wave over two periods. The solution of
KdV with this initial value propagates with speed c .3 without altering its shape.
Figure 12 shows a function obtained from Fig. 11 by raising the first peak by 20%
and lowering the second by 20%. Figure 13 shows the solution at time 0.52
using the function in Fig. 12 as initial data for the KdV equation. At time 1.04
the solution returns to its original shape in Fig. 12 while translating with speed
c .3. This and other calculations indicate that the double cnoidal wave is stable.

In [3], Benjamin presents an elegant argument to show that the second
variation of -F2 under constraint of Fo and F is indefinite for a double cnoidal
wave, and therefore a double cnoidal wave is not even a local minimum of -F2
under the constraints; he raises the question whether this implies instability of the
double cnoidal wave. The numerical study reported above and others unreported
here indicate stability. We remark that this is not surprising from the point of view
of Hamiltonian theory.

We learned recently that in 1965 Zabusky tested the stability of solutions of the KdV equation
by imposing random disturbances on their initial data; he too observed that solutions were remarkably
stable under such perturbations.
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10.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00X

FIG. 2. The solution o[ the KdV equation at time .28 with initial value shown in _Fig.

16.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00X

FIG. 3. The solution of the KdV equation at time .56 with initial value shown in Fig.
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10.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

FIG. 4. The solution of the KdV equation at time .84 with initial value shown in Fig.

I0.00 2.00 4.00 6 8.00 2" 10.00 12.00 14.00 16.00

FIG. 5. The solution of the KdV equation at time 1.12 with the initial valueshown in Fig.
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0.00 2.00 4.00 6.00 8.00 10.00 12.00 14".00 16.00
X

FIG. 6. A random disturbance is superimposed on the solution shown in Fig.

0.00 2.00 4.00 6.00 8.00 X 10.00 12.00 14.00 16.00

FIG. 7. The solution of the KdV equation at time .28 with initial value shown in Fig. 6
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0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00
X

FIG. 8. The solution of the KdV equation at time .56 with initial value shown in Fig. 6

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00
X

FltJ. 9. The solution of the KdV equation at time .84 with initial value shown in Fig. 6
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O.O0 2.O0 4.O0 6.O0 8’.O0 10.O0 12.O0 14.O0 ,.O0

FIG. 10. The solution o]" the KdVequation at time 1.12 with the initial value shown in _Fig. 6

0.00 2.00 4.00 6.00 O0 10.00 .00
X

FIG. 1. A double cnoidal wave over two periods
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0.00 2.00 4.00 6.00 8.00 10.00 12.00
X

FIG. 12. The firstpeak ofthe cnoidal wave in Fig. 11 was raised by 20% and the second was lowered
by 20%

FIG. 13. The solution to the KdV equation at .52 using the function shown in Fig. 12 as initial
data. At 1.04 the solution returns to approximately the shape in Fig. 12
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